Ueber Kreisevolventen.

Die Betrachtung der successiven Evolventen des Kreises führt zu einer einfachen mechanischen Construction der Glieder der Exponentialreihe, welche, soviel ich weiss, noch nicht bemerkt ist. Beschreibt man mit dem Radius r einen Kreis K_1 und wählt auf seiner Peripherie einen bestimmten Punct m_o , von welchem aus der (in einem bestimmten Sinne positiv genommene) Drehungswinkel φ gerechnet wird, so ist das Stück der Peripherie von dem Puncte m_o bis zu dem Puncte m_1 , welcher dem Winkel φ entspricht,

$$m_0 m_1 = r \varphi$$
.

Wickelt man dieses Stück ab, vom Punct m_o aus, so beschreibt m_o ein Stück m_o m_2 der Kreisevolvente K_2 , welches

$$m_0 m_2 = \frac{r\varphi^2}{1\cdot 2}$$

ist. Wickelt man abermals dies Stück ab, so dass die Ablösung des Fadens am Puncte m_o beginnt, so beschreibt m_o ein Stück

$$m_0 m_3 = \frac{r\varphi^3}{1 \cdot 2 \cdot 3}$$

der Evolvente K_3 der Curve K_2 , und so fort. Der Radius r und die Curvenstücke m_0 m_1 , m_0 m_2 , m_0 m_3 , ... bilden die successiven Glieder der unendlichen Reihe, in welche re^{φ} entwickelt wird.

Der Beweis lässt sich am einfachsten durch Betrachtung der complexen Grössen und ihrer geometrischen Bedeutung führen, wie folgt.

Wir betrachten die beiden reellen Functionen x_n und y_n der reellen Variabeln φ , welche durch die Gleichung

$$x_{n} + y_{n} i = re^{\varphi i} + \frac{r\varphi}{1} e^{(\varphi - \frac{\pi}{2})i} + \dots + \frac{r\varphi^{n-1}}{1 \cdot 2 \cdot 3 \dots (n-1)} e^{(\varphi - (n-1)\frac{\pi}{2})i}$$

definirt sind $(i=\sqrt{-1})$, als zusammengehörige rechtwinklige Coordinaten eines Punctes m_n einer Ebene; der Ort aller dieser Puncte, welche allen reellen Werthen von φ entsprechen, bildet eine Curve K_n ; für $\varphi=0$ erhält man den Punct $x_n=r$, $y_n=0$; wir wollen ihn mit m_{ϕ} bezeichnen und rechnen von ihm aus den Bogen $s_n=m_{\phi}$ m_n der Curve nach der Seite hin, welche positiven Werthen von φ entspricht, Nun ist für $h \geq 1$:

$$d\left(\frac{r\varphi^{h}}{1.2..h}e^{\left(\varphi-h\frac{\pi}{2}\right)i}\right) = \frac{r\varphi^{h-1}}{1.2..(h-1)}e^{\left(\varphi-h\frac{\pi}{2}\right)i}d\varphi - \frac{r\varphi^{h}}{1.2..h}e^{\left(\varphi-(h+1)\frac{\pi}{2}\right)i}d\varphi,$$

und

$$d(re^{\varphi i}) = -re^{\left(\varphi - \frac{\pi}{2}\right)i} d\varphi$$

woraus sogleich durch paarweise Destruction der Glieder

$$dx_{n} + i dy_{n} = -\frac{r\varphi^{n} - 1}{1 \cdot 2 \cdot (n - 1)} e^{\left(\varphi - n\frac{\pi}{2}\right)i} d\varphi;$$

$$ds_{n} = \frac{r\varphi^{n} - 1}{1 \cdot 2 \cdot (n - 1)}; \ s_{n} = \frac{r\varphi^{n}}{1 \cdot 2 \cdot (n - 1)} = m_{0} m_{n}$$

folgt; ausserdem leuchtet ein, dass $t_n = \varphi - n \, \frac{\pi}{2}$ die Neigung der Tangente im Puncte m_n ist, in dem Sinn genommen, nach welchem φ und s_n abnehmen. Man kann daher die erste Gleichung so schreiben

$$x_n + y_n i = re^{\varphi i} + s_1 e^{t_1 i} + s_2 e^{t_2 i} + \dots + s_{n-1} e^{t_{n-1} i}$$

oder

$$x_{n} + y_{n} i = x_{n-1} + y_{n-1} i + s_{n-1} e^{t_{n-1} i}$$

wodurch unmittelbar ausgedrückt ist, dass die Curve K_n die Evolvente der Curve K_{n-1} ist.

Für n = 1 erhält man die Gleichungen

$$x_1 = r \cos \varphi$$
, $y_1 = r \sin \varphi$

des Kreises K_1 ; für n=2 die Gleichungen

$$x_2 = r \cos \varphi + r\varphi \sin \varphi$$
; $y_2 = r \sin \varphi - r\varphi \cos \varphi$

der Kreisevolvente K2 u. s. f.

Ich bemerke nur noch, dass man die allgemeine Gleichung auch so schreiben kann

$$x_{n} + y_{n} i = re^{\varphi i} \left\{ 1 + \frac{-\varphi i}{1} + \frac{(-\varphi i)^{2}}{1 \cdot 2} + \dots + \frac{(-\varphi i)^{n-1}}{1 \cdot 2 \cdot \dots \cdot (n-1)} \right\}$$
$$= re^{\varphi i} \left[e^{-\varphi i} \right]_{n}$$

wo der letzte Factor auf der rechten Seite die Summe der ersten n Glieder der Entwicklung von $e^{-\varphi i}$ bedeutet. Mag φ noch so gross sein, so wird für unendlich wachsende Werthe von n stets $\lim_n s_n = 0$, $\lim_n (x_n + y_n i) = r$, d. h. der Punct m_n nähert sich unbegrenzt wieder dem Puncte m_o .

[Zürich, 23. Juni 1859.]

Tagebuch über Erdbeben und andere Naturerscheinungen im Visperthal im Jahre 1859.

Von Pfarrer M. Tscheinen in Grächen.

Jenner 11. [Witterung: kalt, Sonne. Windrichtung: SW-NO.] — Gestern Abend und heute früh grosse Kupferröthe in SW.